Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inopnd.1 | |- ( ph -> J e. Top ) |
|
inopnd.2 | |- ( ph -> A e. J ) |
||
inopnd.3 | |- ( ph -> B e. J ) |
||
Assertion | inopnd | |- ( ph -> ( A i^i B ) e. J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inopnd.1 | |- ( ph -> J e. Top ) |
|
2 | inopnd.2 | |- ( ph -> A e. J ) |
|
3 | inopnd.3 | |- ( ph -> B e. J ) |
|
4 | inopn | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A i^i B ) e. J ) |