Metamath Proof Explorer


Theorem inopnd

Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses inopnd.1
|- ( ph -> J e. Top )
inopnd.2
|- ( ph -> A e. J )
inopnd.3
|- ( ph -> B e. J )
Assertion inopnd
|- ( ph -> ( A i^i B ) e. J )

Proof

Step Hyp Ref Expression
1 inopnd.1
 |-  ( ph -> J e. Top )
2 inopnd.2
 |-  ( ph -> A e. J )
3 inopnd.3
 |-  ( ph -> B e. J )
4 inopn
 |-  ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A i^i B ) e. J )