Metamath Proof Explorer


Theorem inrresf

Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022)

Ref Expression
Assertion inrresf
|- ( inr |` B ) : B --> ( A |_| B )

Proof

Step Hyp Ref Expression
1 djurf1o
 |-  inr : _V -1-1-onto-> ( { 1o } X. _V )
2 f1ofun
 |-  ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> Fun inr )
3 ffvresb
 |-  ( Fun inr -> ( ( inr |` B ) : B --> ( A |_| B ) <-> A. x e. B ( x e. dom inr /\ ( inr ` x ) e. ( A |_| B ) ) ) )
4 1 2 3 mp2b
 |-  ( ( inr |` B ) : B --> ( A |_| B ) <-> A. x e. B ( x e. dom inr /\ ( inr ` x ) e. ( A |_| B ) ) )
5 elex
 |-  ( x e. B -> x e. _V )
6 opex
 |-  <. 1o , x >. e. _V
7 df-inr
 |-  inr = ( x e. _V |-> <. 1o , x >. )
8 6 7 dmmpti
 |-  dom inr = _V
9 5 8 eleqtrrdi
 |-  ( x e. B -> x e. dom inr )
10 djurcl
 |-  ( x e. B -> ( inr ` x ) e. ( A |_| B ) )
11 9 10 jca
 |-  ( x e. B -> ( x e. dom inr /\ ( inr ` x ) e. ( A |_| B ) ) )
12 4 11 mprgbir
 |-  ( inr |` B ) : B --> ( A |_| B )