Metamath Proof Explorer


Theorem inrresf1

Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022)

Ref Expression
Assertion inrresf1
|- ( inr |` B ) : B -1-1-> ( A |_| B )

Proof

Step Hyp Ref Expression
1 djurf1o
 |-  inr : _V -1-1-onto-> ( { 1o } X. _V )
2 f1of1
 |-  ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> inr : _V -1-1-> ( { 1o } X. _V ) )
3 1 2 ax-mp
 |-  inr : _V -1-1-> ( { 1o } X. _V )
4 ssv
 |-  B C_ _V
5 inrresf
 |-  ( inr |` B ) : B --> ( A |_| B )
6 f1resf1
 |-  ( ( inr : _V -1-1-> ( { 1o } X. _V ) /\ B C_ _V /\ ( inr |` B ) : B --> ( A |_| B ) ) -> ( inr |` B ) : B -1-1-> ( A |_| B ) )
7 3 4 5 6 mp3an
 |-  ( inr |` B ) : B -1-1-> ( A |_| B )