Metamath Proof Explorer


Theorem int0

Description: The intersection of the empty set is the universal class. Exercise 2 of TakeutiZaring p. 44. (Contributed by NM, 18-Aug-1993) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion int0
|- |^| (/) = _V

Proof

Step Hyp Ref Expression
1 ral0
 |-  A. x e. (/) y e. x
2 vex
 |-  y e. _V
3 2 elint2
 |-  ( y e. |^| (/) <-> A. x e. (/) y e. x )
4 1 3 mpbir
 |-  y e. |^| (/)
5 4 2 2th
 |-  ( y e. |^| (/) <-> y e. _V )
6 5 eqriv
 |-  |^| (/) = _V