Metamath Proof Explorer


Theorem int3

Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. Conventional form of int3 is 3expia . (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis int3.1
|- (. (. ph ,. ps ,. ch ). ->. th ).
Assertion int3
|- (. (. ph ,. ps ). ->. ( ch -> th ) ).

Proof

Step Hyp Ref Expression
1 int3.1
 |-  (. (. ph ,. ps ,. ch ). ->. th ).
2 1 dfvd3ani
 |-  ( ( ph /\ ps /\ ch ) -> th )
3 2 3expia
 |-  ( ( ph /\ ps ) -> ( ch -> th ) )
4 3 dfvd2anir
 |-  (. (. ph ,. ps ). ->. ( ch -> th ) ).