Step |
Hyp |
Ref |
Expression |
1 |
|
intabs.1 |
|- ( x = y -> ( ph <-> ps ) ) |
2 |
|
intabs.2 |
|- ( x = |^| { y | ps } -> ( ph <-> ch ) ) |
3 |
|
intabs.3 |
|- ( |^| { y | ps } C_ A /\ ch ) |
4 |
|
sseq1 |
|- ( x = |^| { y | ps } -> ( x C_ A <-> |^| { y | ps } C_ A ) ) |
5 |
4 2
|
anbi12d |
|- ( x = |^| { y | ps } -> ( ( x C_ A /\ ph ) <-> ( |^| { y | ps } C_ A /\ ch ) ) ) |
6 |
5 3
|
intmin3 |
|- ( |^| { y | ps } e. _V -> |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } ) |
7 |
|
intnex |
|- ( -. |^| { y | ps } e. _V <-> |^| { y | ps } = _V ) |
8 |
|
ssv |
|- |^| { x | ( x C_ A /\ ph ) } C_ _V |
9 |
|
sseq2 |
|- ( |^| { y | ps } = _V -> ( |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } <-> |^| { x | ( x C_ A /\ ph ) } C_ _V ) ) |
10 |
8 9
|
mpbiri |
|- ( |^| { y | ps } = _V -> |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } ) |
11 |
7 10
|
sylbi |
|- ( -. |^| { y | ps } e. _V -> |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } ) |
12 |
6 11
|
pm2.61i |
|- |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } |
13 |
1
|
cbvabv |
|- { x | ph } = { y | ps } |
14 |
13
|
inteqi |
|- |^| { x | ph } = |^| { y | ps } |
15 |
12 14
|
sseqtrri |
|- |^| { x | ( x C_ A /\ ph ) } C_ |^| { x | ph } |
16 |
|
simpr |
|- ( ( x C_ A /\ ph ) -> ph ) |
17 |
16
|
ss2abi |
|- { x | ( x C_ A /\ ph ) } C_ { x | ph } |
18 |
|
intss |
|- ( { x | ( x C_ A /\ ph ) } C_ { x | ph } -> |^| { x | ph } C_ |^| { x | ( x C_ A /\ ph ) } ) |
19 |
17 18
|
ax-mp |
|- |^| { x | ph } C_ |^| { x | ( x C_ A /\ ph ) } |
20 |
15 19
|
eqssi |
|- |^| { x | ( x C_ A /\ ph ) } = |^| { x | ph } |