| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relcnv |  |-  Rel `' R | 
						
							| 2 |  | relin2 |  |-  ( Rel `' R -> Rel ( R i^i `' R ) ) | 
						
							| 3 |  | ssrel |  |-  ( Rel ( R i^i `' R ) -> ( ( R i^i `' R ) C_ _I <-> A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) ) ) | 
						
							| 4 | 1 2 3 | mp2b |  |-  ( ( R i^i `' R ) C_ _I <-> A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) ) | 
						
							| 5 |  | elin |  |-  ( <. x , y >. e. ( R i^i `' R ) <-> ( <. x , y >. e. R /\ <. x , y >. e. `' R ) ) | 
						
							| 6 |  | df-br |  |-  ( x R y <-> <. x , y >. e. R ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 |  | vex |  |-  y e. _V | 
						
							| 9 | 7 8 | brcnv |  |-  ( x `' R y <-> y R x ) | 
						
							| 10 |  | df-br |  |-  ( x `' R y <-> <. x , y >. e. `' R ) | 
						
							| 11 | 9 10 | bitr3i |  |-  ( y R x <-> <. x , y >. e. `' R ) | 
						
							| 12 | 6 11 | anbi12i |  |-  ( ( x R y /\ y R x ) <-> ( <. x , y >. e. R /\ <. x , y >. e. `' R ) ) | 
						
							| 13 | 5 12 | bitr4i |  |-  ( <. x , y >. e. ( R i^i `' R ) <-> ( x R y /\ y R x ) ) | 
						
							| 14 |  | df-br |  |-  ( x _I y <-> <. x , y >. e. _I ) | 
						
							| 15 | 8 | ideq |  |-  ( x _I y <-> x = y ) | 
						
							| 16 | 14 15 | bitr3i |  |-  ( <. x , y >. e. _I <-> x = y ) | 
						
							| 17 | 13 16 | imbi12i |  |-  ( ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) <-> ( ( x R y /\ y R x ) -> x = y ) ) | 
						
							| 18 | 17 | 2albii |  |-  ( A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) <-> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) | 
						
							| 19 | 4 18 | bitri |  |-  ( ( R i^i `' R ) C_ _I <-> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |