Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | intcld | |- ( ( A =/= (/) /\ A C_ ( Clsd ` J ) ) -> |^| A e. ( Clsd ` J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intiin | |- |^| A = |^|_ x e. A x |
|
2 | dfss3 | |- ( A C_ ( Clsd ` J ) <-> A. x e. A x e. ( Clsd ` J ) ) |
|
3 | iincld | |- ( ( A =/= (/) /\ A. x e. A x e. ( Clsd ` J ) ) -> |^|_ x e. A x e. ( Clsd ` J ) ) |
|
4 | 2 3 | sylan2b | |- ( ( A =/= (/) /\ A C_ ( Clsd ` J ) ) -> |^|_ x e. A x e. ( Clsd ` J ) ) |
5 | 1 4 | eqeltrid | |- ( ( A =/= (/) /\ A C_ ( Clsd ` J ) ) -> |^| A e. ( Clsd ` J ) ) |