Metamath Proof Explorer


Theorem intcld

Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion intcld
|- ( ( A =/= (/) /\ A C_ ( Clsd ` J ) ) -> |^| A e. ( Clsd ` J ) )

Proof

Step Hyp Ref Expression
1 intiin
 |-  |^| A = |^|_ x e. A x
2 dfss3
 |-  ( A C_ ( Clsd ` J ) <-> A. x e. A x e. ( Clsd ` J ) )
3 iincld
 |-  ( ( A =/= (/) /\ A. x e. A x e. ( Clsd ` J ) ) -> |^|_ x e. A x e. ( Clsd ` J ) )
4 2 3 sylan2b
 |-  ( ( A =/= (/) /\ A C_ ( Clsd ` J ) ) -> |^|_ x e. A x e. ( Clsd ` J ) )
5 1 4 eqeltrid
 |-  ( ( A =/= (/) /\ A C_ ( Clsd ` J ) ) -> |^| A e. ( Clsd ` J ) )