Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inteq | |- ( A = B -> |^| A = |^| B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq | |- ( A = B -> ( A. y e. A x e. y <-> A. y e. B x e. y ) ) |
|
| 2 | 1 | abbidv | |- ( A = B -> { x | A. y e. A x e. y } = { x | A. y e. B x e. y } ) |
| 3 | dfint2 | |- |^| A = { x | A. y e. A x e. y } |
|
| 4 | dfint2 | |- |^| B = { x | A. y e. B x e. y } |
|
| 5 | 2 3 4 | 3eqtr4g | |- ( A = B -> |^| A = |^| B ) |