Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Hypothesis | inteqd.1 | |- ( ph -> A = B ) |
|
Assertion | inteqd | |- ( ph -> |^| A = |^| B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | |- ( ph -> A = B ) |
|
2 | inteq | |- ( A = B -> |^| A = |^| B ) |
|
3 | 1 2 | syl | |- ( ph -> |^| A = |^| B ) |