| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 2 |
|
intss1 |
|- ( x e. A -> |^| A C_ x ) |
| 3 |
|
vex |
|- x e. _V |
| 4 |
3
|
ssex |
|- ( |^| A C_ x -> |^| A e. _V ) |
| 5 |
2 4
|
syl |
|- ( x e. A -> |^| A e. _V ) |
| 6 |
5
|
exlimiv |
|- ( E. x x e. A -> |^| A e. _V ) |
| 7 |
1 6
|
sylbi |
|- ( A =/= (/) -> |^| A e. _V ) |
| 8 |
|
vprc |
|- -. _V e. _V |
| 9 |
|
inteq |
|- ( A = (/) -> |^| A = |^| (/) ) |
| 10 |
|
int0 |
|- |^| (/) = _V |
| 11 |
9 10
|
eqtrdi |
|- ( A = (/) -> |^| A = _V ) |
| 12 |
11
|
eleq1d |
|- ( A = (/) -> ( |^| A e. _V <-> _V e. _V ) ) |
| 13 |
8 12
|
mtbiri |
|- ( A = (/) -> -. |^| A e. _V ) |
| 14 |
13
|
necon2ai |
|- ( |^| A e. _V -> A =/= (/) ) |
| 15 |
7 14
|
impbii |
|- ( A =/= (/) <-> |^| A e. _V ) |