Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | intexrab | |- ( E. x e. A ph <-> |^| { x e. A | ph } e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexab | |- ( E. x ( x e. A /\ ph ) <-> |^| { x | ( x e. A /\ ph ) } e. _V ) |
|
2 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
3 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
4 | 3 | inteqi | |- |^| { x e. A | ph } = |^| { x | ( x e. A /\ ph ) } |
5 | 4 | eleq1i | |- ( |^| { x e. A | ph } e. _V <-> |^| { x | ( x e. A /\ ph ) } e. _V ) |
6 | 1 2 5 | 3bitr4i | |- ( E. x e. A ph <-> |^| { x e. A | ph } e. _V ) |