Metamath Proof Explorer


Theorem intexrab

Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003)

Ref Expression
Assertion intexrab
|- ( E. x e. A ph <-> |^| { x e. A | ph } e. _V )

Proof

Step Hyp Ref Expression
1 intexab
 |-  ( E. x ( x e. A /\ ph ) <-> |^| { x | ( x e. A /\ ph ) } e. _V )
2 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
3 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
4 3 inteqi
 |-  |^| { x e. A | ph } = |^| { x | ( x e. A /\ ph ) }
5 4 eleq1i
 |-  ( |^| { x e. A | ph } e. _V <-> |^| { x | ( x e. A /\ ph ) } e. _V )
6 1 2 5 3bitr4i
 |-  ( E. x e. A ph <-> |^| { x e. A | ph } e. _V )