| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intfracq.1 |
|- Z = ( |_ ` ( M / N ) ) |
| 2 |
|
intfracq.2 |
|- F = ( ( M / N ) - Z ) |
| 3 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 4 |
3
|
adantr |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. RR ) |
| 5 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 6 |
5
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. RR ) |
| 7 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 8 |
7
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N =/= 0 ) |
| 9 |
4 6 8
|
redivcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. RR ) |
| 10 |
1 2
|
intfrac2 |
|- ( ( M / N ) e. RR -> ( 0 <_ F /\ F < 1 /\ ( M / N ) = ( Z + F ) ) ) |
| 11 |
9 10
|
syl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( 0 <_ F /\ F < 1 /\ ( M / N ) = ( Z + F ) ) ) |
| 12 |
11
|
simp1d |
|- ( ( M e. ZZ /\ N e. NN ) -> 0 <_ F ) |
| 13 |
|
fraclt1 |
|- ( ( M / N ) e. RR -> ( ( M / N ) - ( |_ ` ( M / N ) ) ) < 1 ) |
| 14 |
9 13
|
syl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - ( |_ ` ( M / N ) ) ) < 1 ) |
| 15 |
1
|
oveq2i |
|- ( ( M / N ) - Z ) = ( ( M / N ) - ( |_ ` ( M / N ) ) ) |
| 16 |
2 15
|
eqtri |
|- F = ( ( M / N ) - ( |_ ` ( M / N ) ) ) |
| 17 |
16
|
a1i |
|- ( ( M e. ZZ /\ N e. NN ) -> F = ( ( M / N ) - ( |_ ` ( M / N ) ) ) ) |
| 18 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 19 |
18 7
|
dividd |
|- ( N e. NN -> ( N / N ) = 1 ) |
| 20 |
19
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N / N ) = 1 ) |
| 21 |
14 17 20
|
3brtr4d |
|- ( ( M e. ZZ /\ N e. NN ) -> F < ( N / N ) ) |
| 22 |
|
reflcl |
|- ( ( M / N ) e. RR -> ( |_ ` ( M / N ) ) e. RR ) |
| 23 |
9 22
|
syl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. RR ) |
| 24 |
1 23
|
eqeltrid |
|- ( ( M e. ZZ /\ N e. NN ) -> Z e. RR ) |
| 25 |
9 24
|
resubcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - Z ) e. RR ) |
| 26 |
2 25
|
eqeltrid |
|- ( ( M e. ZZ /\ N e. NN ) -> F e. RR ) |
| 27 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 28 |
5 27
|
jca |
|- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 29 |
28
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N e. RR /\ 0 < N ) ) |
| 30 |
|
ltmuldiv2 |
|- ( ( F e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( N x. F ) < N <-> F < ( N / N ) ) ) |
| 31 |
26 6 29 30
|
syl3anc |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. F ) < N <-> F < ( N / N ) ) ) |
| 32 |
21 31
|
mpbird |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) < N ) |
| 33 |
2
|
oveq2i |
|- ( N x. F ) = ( N x. ( ( M / N ) - Z ) ) |
| 34 |
18
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
| 35 |
9
|
recnd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. CC ) |
| 36 |
9
|
flcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. ZZ ) |
| 37 |
1 36
|
eqeltrid |
|- ( ( M e. ZZ /\ N e. NN ) -> Z e. ZZ ) |
| 38 |
37
|
zcnd |
|- ( ( M e. ZZ /\ N e. NN ) -> Z e. CC ) |
| 39 |
34 35 38
|
subdid |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( ( M / N ) - Z ) ) = ( ( N x. ( M / N ) ) - ( N x. Z ) ) ) |
| 40 |
33 39
|
eqtrid |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) = ( ( N x. ( M / N ) ) - ( N x. Z ) ) ) |
| 41 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 42 |
41
|
adantr |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
| 43 |
42 34 8
|
divcan2d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( M / N ) ) = M ) |
| 44 |
|
simpl |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. ZZ ) |
| 45 |
43 44
|
eqeltrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( M / N ) ) e. ZZ ) |
| 46 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 47 |
46
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. ZZ ) |
| 48 |
47 37
|
zmulcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. Z ) e. ZZ ) |
| 49 |
45 48
|
zsubcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. ( M / N ) ) - ( N x. Z ) ) e. ZZ ) |
| 50 |
40 49
|
eqeltrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) e. ZZ ) |
| 51 |
|
zltlem1 |
|- ( ( ( N x. F ) e. ZZ /\ N e. ZZ ) -> ( ( N x. F ) < N <-> ( N x. F ) <_ ( N - 1 ) ) ) |
| 52 |
50 47 51
|
syl2anc |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. F ) < N <-> ( N x. F ) <_ ( N - 1 ) ) ) |
| 53 |
32 52
|
mpbid |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) <_ ( N - 1 ) ) |
| 54 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
| 55 |
5 54
|
syl |
|- ( N e. NN -> ( N - 1 ) e. RR ) |
| 56 |
55
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N - 1 ) e. RR ) |
| 57 |
|
lemuldiv2 |
|- ( ( F e. RR /\ ( N - 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( N x. F ) <_ ( N - 1 ) <-> F <_ ( ( N - 1 ) / N ) ) ) |
| 58 |
26 56 29 57
|
syl3anc |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. F ) <_ ( N - 1 ) <-> F <_ ( ( N - 1 ) / N ) ) ) |
| 59 |
53 58
|
mpbid |
|- ( ( M e. ZZ /\ N e. NN ) -> F <_ ( ( N - 1 ) / N ) ) |
| 60 |
11
|
simp3d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) = ( Z + F ) ) |
| 61 |
12 59 60
|
3jca |
|- ( ( M e. ZZ /\ N e. NN ) -> ( 0 <_ F /\ F <_ ( ( N - 1 ) / N ) /\ ( M / N ) = ( Z + F ) ) ) |