| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- y e. _V |
| 2 |
1
|
elintrab |
|- ( y e. |^| { x e. B | A C_ x } <-> A. x e. B ( A C_ x -> y e. x ) ) |
| 3 |
|
ssid |
|- A C_ A |
| 4 |
|
sseq2 |
|- ( x = A -> ( A C_ x <-> A C_ A ) ) |
| 5 |
|
eleq2 |
|- ( x = A -> ( y e. x <-> y e. A ) ) |
| 6 |
4 5
|
imbi12d |
|- ( x = A -> ( ( A C_ x -> y e. x ) <-> ( A C_ A -> y e. A ) ) ) |
| 7 |
6
|
rspcv |
|- ( A e. B -> ( A. x e. B ( A C_ x -> y e. x ) -> ( A C_ A -> y e. A ) ) ) |
| 8 |
3 7
|
mpii |
|- ( A e. B -> ( A. x e. B ( A C_ x -> y e. x ) -> y e. A ) ) |
| 9 |
2 8
|
biimtrid |
|- ( A e. B -> ( y e. |^| { x e. B | A C_ x } -> y e. A ) ) |
| 10 |
9
|
ssrdv |
|- ( A e. B -> |^| { x e. B | A C_ x } C_ A ) |
| 11 |
|
ssintub |
|- A C_ |^| { x e. B | A C_ x } |
| 12 |
11
|
a1i |
|- ( A e. B -> A C_ |^| { x e. B | A C_ x } ) |
| 13 |
10 12
|
eqssd |
|- ( A e. B -> |^| { x e. B | A C_ x } = A ) |