Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Hypothesis | intmin2.1 | |- A e. _V |
|
Assertion | intmin2 | |- |^| { x | A C_ x } = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intmin2.1 | |- A e. _V |
|
2 | rabab | |- { x e. _V | A C_ x } = { x | A C_ x } |
|
3 | 2 | inteqi | |- |^| { x e. _V | A C_ x } = |^| { x | A C_ x } |
4 | intmin | |- ( A e. _V -> |^| { x e. _V | A C_ x } = A ) |
|
5 | 1 4 | ax-mp | |- |^| { x e. _V | A C_ x } = A |
6 | 3 5 | eqtr3i | |- |^| { x | A C_ x } = A |