Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | intmin2.1 | |- A e. _V |
|
| Assertion | intmin2 | |- |^| { x | A C_ x } = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intmin2.1 | |- A e. _V |
|
| 2 | rabab | |- { x e. _V | A C_ x } = { x | A C_ x } |
|
| 3 | 2 | inteqi | |- |^| { x e. _V | A C_ x } = |^| { x | A C_ x } |
| 4 | intmin | |- ( A e. _V -> |^| { x e. _V | A C_ x } = A ) |
|
| 5 | 1 4 | ax-mp | |- |^| { x e. _V | A C_ x } = A |
| 6 | 3 5 | eqtr3i | |- |^| { x | A C_ x } = A |