Metamath Proof Explorer


Theorem intmin2

Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003)

Ref Expression
Hypothesis intmin2.1
|- A e. _V
Assertion intmin2
|- |^| { x | A C_ x } = A

Proof

Step Hyp Ref Expression
1 intmin2.1
 |-  A e. _V
2 rabab
 |-  { x e. _V | A C_ x } = { x | A C_ x }
3 2 inteqi
 |-  |^| { x e. _V | A C_ x } = |^| { x | A C_ x }
4 intmin
 |-  ( A e. _V -> |^| { x e. _V | A C_ x } = A )
5 1 4 ax-mp
 |-  |^| { x e. _V | A C_ x } = A
6 3 5 eqtr3i
 |-  |^| { x | A C_ x } = A