Metamath Proof Explorer


Theorem intmin3

Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005)

Ref Expression
Hypotheses intmin3.2
|- ( x = A -> ( ph <-> ps ) )
intmin3.3
|- ps
Assertion intmin3
|- ( A e. V -> |^| { x | ph } C_ A )

Proof

Step Hyp Ref Expression
1 intmin3.2
 |-  ( x = A -> ( ph <-> ps ) )
2 intmin3.3
 |-  ps
3 1 elabg
 |-  ( A e. V -> ( A e. { x | ph } <-> ps ) )
4 2 3 mpbiri
 |-  ( A e. V -> A e. { x | ph } )
5 intss1
 |-  ( A e. { x | ph } -> |^| { x | ph } C_ A )
6 4 5 syl
 |-  ( A e. V -> |^| { x | ph } C_ A )