Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | intminss.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
Assertion | intminss | |- ( ( A e. B /\ ps ) -> |^| { x e. B | ph } C_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intminss.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | 1 | elrab | |- ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) ) |
3 | intss1 | |- ( A e. { x e. B | ph } -> |^| { x e. B | ph } C_ A ) |
|
4 | 2 3 | sylbir | |- ( ( A e. B /\ ps ) -> |^| { x e. B | ph } C_ A ) |