Metamath Proof Explorer


Theorem intminss

Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013)

Ref Expression
Hypothesis intminss.1
|- ( x = A -> ( ph <-> ps ) )
Assertion intminss
|- ( ( A e. B /\ ps ) -> |^| { x e. B | ph } C_ A )

Proof

Step Hyp Ref Expression
1 intminss.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 elrab
 |-  ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) )
3 intss1
 |-  ( A e. { x e. B | ph } -> |^| { x e. B | ph } C_ A )
4 2 3 sylbir
 |-  ( ( A e. B /\ ps ) -> |^| { x e. B | ph } C_ A )