Description: Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | intn3and.1 | |- ( ph -> -. ps ) |
|
Assertion | intn3an2d | |- ( ph -> -. ( ch /\ ps /\ th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intn3and.1 | |- ( ph -> -. ps ) |
|
2 | simp2 | |- ( ( ch /\ ps /\ th ) -> ps ) |
|
3 | 1 2 | nsyl | |- ( ph -> -. ( ch /\ ps /\ th ) ) |