Metamath Proof Explorer


Theorem intnand

Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005)

Ref Expression
Hypothesis intnand.1
|- ( ph -> -. ps )
Assertion intnand
|- ( ph -> -. ( ch /\ ps ) )

Proof

Step Hyp Ref Expression
1 intnand.1
 |-  ( ph -> -. ps )
2 simpr
 |-  ( ( ch /\ ps ) -> ps )
3 1 2 nsyl
 |-  ( ph -> -. ( ch /\ ps ) )