Metamath Proof Explorer


Theorem intnanrt

Description: Introduction of conjunct inside of a contradiction. Would be used in elfvov1 . (Contributed by SN, 18-May-2025)

Ref Expression
Assertion intnanrt
|- ( -. ph -> -. ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ph /\ ps ) -> ph )
2 1 con3i
 |-  ( -. ph -> -. ( ph /\ ps ) )