Metamath Proof Explorer


Theorem intpr

Description: The intersection of a pair is the intersection of its members. Theorem 71 of Suppes p. 42. (Contributed by NM, 14-Oct-1999) Prove from intprg . (Revised by BJ, 1-Sep-2024)

Ref Expression
Hypotheses intpr.1
|- A e. _V
intpr.2
|- B e. _V
Assertion intpr
|- |^| { A , B } = ( A i^i B )

Proof

Step Hyp Ref Expression
1 intpr.1
 |-  A e. _V
2 intpr.2
 |-  B e. _V
3 intprg
 |-  ( ( A e. _V /\ B e. _V ) -> |^| { A , B } = ( A i^i B ) )
4 1 2 3 mp2an
 |-  |^| { A , B } = ( A i^i B )