Metamath Proof Explorer


Theorem intpreima

Description: Preimage of an intersection. (Contributed by FL, 28-Apr-2012)

Ref Expression
Assertion intpreima
|- ( ( Fun F /\ A =/= (/) ) -> ( `' F " |^| A ) = |^|_ x e. A ( `' F " x ) )

Proof

Step Hyp Ref Expression
1 intiin
 |-  |^| A = |^|_ x e. A x
2 1 imaeq2i
 |-  ( `' F " |^| A ) = ( `' F " |^|_ x e. A x )
3 iinpreima
 |-  ( ( Fun F /\ A =/= (/) ) -> ( `' F " |^|_ x e. A x ) = |^|_ x e. A ( `' F " x ) )
4 2 3 eqtrid
 |-  ( ( Fun F /\ A =/= (/) ) -> ( `' F " |^| A ) = |^|_ x e. A ( `' F " x ) )