Step |
Hyp |
Ref |
Expression |
1 |
|
preq1 |
|- ( x = A -> { x , y } = { A , y } ) |
2 |
1
|
inteqd |
|- ( x = A -> |^| { x , y } = |^| { A , y } ) |
3 |
|
ineq1 |
|- ( x = A -> ( x i^i y ) = ( A i^i y ) ) |
4 |
2 3
|
eqeq12d |
|- ( x = A -> ( |^| { x , y } = ( x i^i y ) <-> |^| { A , y } = ( A i^i y ) ) ) |
5 |
|
preq2 |
|- ( y = B -> { A , y } = { A , B } ) |
6 |
5
|
inteqd |
|- ( y = B -> |^| { A , y } = |^| { A , B } ) |
7 |
|
ineq2 |
|- ( y = B -> ( A i^i y ) = ( A i^i B ) ) |
8 |
6 7
|
eqeq12d |
|- ( y = B -> ( |^| { A , y } = ( A i^i y ) <-> |^| { A , B } = ( A i^i B ) ) ) |
9 |
|
vex |
|- x e. _V |
10 |
|
vex |
|- y e. _V |
11 |
9 10
|
intpr |
|- |^| { x , y } = ( x i^i y ) |
12 |
4 8 11
|
vtocl2g |
|- ( ( A e. V /\ B e. W ) -> |^| { A , B } = ( A i^i B ) ) |