Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F : A --> B ) |
2 |
1
|
frnd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F C_ B ) |
3 |
1
|
fdmd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> dom F = A ) |
4 |
|
simpr2 |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> A =/= (/) ) |
5 |
3 4
|
eqnetrd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> dom F =/= (/) ) |
6 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
7 |
6
|
necon3bii |
|- ( dom F =/= (/) <-> ran F =/= (/) ) |
8 |
5 7
|
sylib |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F =/= (/) ) |
9 |
|
simpr3 |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> A e. Fin ) |
10 |
1
|
ffnd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F Fn A ) |
11 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
12 |
10 11
|
sylib |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F : A -onto-> ran F ) |
13 |
|
fofi |
|- ( ( A e. Fin /\ F : A -onto-> ran F ) -> ran F e. Fin ) |
14 |
9 12 13
|
syl2anc |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F e. Fin ) |
15 |
2 8 14
|
3jca |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ( ran F C_ B /\ ran F =/= (/) /\ ran F e. Fin ) ) |
16 |
|
elfir |
|- ( ( B e. V /\ ( ran F C_ B /\ ran F =/= (/) /\ ran F e. Fin ) ) -> |^| ran F e. ( fi ` B ) ) |
17 |
15 16
|
syldan |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> |^| ran F e. ( fi ` B ) ) |