Metamath Proof Explorer


Theorem intsng

Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion intsng
|- ( A e. V -> |^| { A } = A )

Proof

Step Hyp Ref Expression
1 dfsn2
 |-  { A } = { A , A }
2 1 inteqi
 |-  |^| { A } = |^| { A , A }
3 intprg
 |-  ( ( A e. V /\ A e. V ) -> |^| { A , A } = ( A i^i A ) )
4 3 anidms
 |-  ( A e. V -> |^| { A , A } = ( A i^i A ) )
5 inidm
 |-  ( A i^i A ) = A
6 4 5 eqtrdi
 |-  ( A e. V -> |^| { A , A } = A )
7 2 6 eqtrid
 |-  ( A e. V -> |^| { A } = A )