Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | intss2 | |- ( A C_ ~P X -> ( A =/= (/) -> |^| A C_ X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni | |- ( A C_ ~P X <-> U. A C_ X ) |
|
2 | 1 | biimpi | |- ( A C_ ~P X -> U. A C_ X ) |
3 | intssuni | |- ( A =/= (/) -> |^| A C_ U. A ) |
|
4 | sstr | |- ( ( |^| A C_ U. A /\ U. A C_ X ) -> |^| A C_ X ) |
|
5 | 4 | expcom | |- ( U. A C_ X -> ( |^| A C_ U. A -> |^| A C_ X ) ) |
6 | 2 3 5 | syl2im | |- ( A C_ ~P X -> ( A =/= (/) -> |^| A C_ X ) ) |