Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | intssuni | |- ( A =/= (/) -> |^| A C_ U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z | |- ( ( A =/= (/) /\ A. y e. A x e. y ) -> E. y e. A x e. y ) |
|
2 | 1 | ex | |- ( A =/= (/) -> ( A. y e. A x e. y -> E. y e. A x e. y ) ) |
3 | vex | |- x e. _V |
|
4 | 3 | elint2 | |- ( x e. |^| A <-> A. y e. A x e. y ) |
5 | eluni2 | |- ( x e. U. A <-> E. y e. A x e. y ) |
|
6 | 2 4 5 | 3imtr4g | |- ( A =/= (/) -> ( x e. |^| A -> x e. U. A ) ) |
7 | 6 | ssrdv | |- ( A =/= (/) -> |^| A C_ U. A ) |