Metamath Proof Explorer


Theorem intssuni

Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006)

Ref Expression
Assertion intssuni
|- ( A =/= (/) -> |^| A C_ U. A )

Proof

Step Hyp Ref Expression
1 r19.2z
 |-  ( ( A =/= (/) /\ A. y e. A x e. y ) -> E. y e. A x e. y )
2 1 ex
 |-  ( A =/= (/) -> ( A. y e. A x e. y -> E. y e. A x e. y ) )
3 vex
 |-  x e. _V
4 3 elint2
 |-  ( x e. |^| A <-> A. y e. A x e. y )
5 eluni2
 |-  ( x e. U. A <-> E. y e. A x e. y )
6 2 4 5 3imtr4g
 |-  ( A =/= (/) -> ( x e. |^| A -> x e. U. A ) )
7 6 ssrdv
 |-  ( A =/= (/) -> |^| A C_ U. A )