Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002)
Ref | Expression | ||
---|---|---|---|
Hypothesis | intunsn.1 | |- B e. _V |
|
Assertion | intunsn | |- |^| ( A u. { B } ) = ( |^| A i^i B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intunsn.1 | |- B e. _V |
|
2 | intun | |- |^| ( A u. { B } ) = ( |^| A i^i |^| { B } ) |
|
3 | 1 | intsn | |- |^| { B } = B |
4 | 3 | ineq2i | |- ( |^| A i^i |^| { B } ) = ( |^| A i^i B ) |
5 | 2 4 | eqtri | |- |^| ( A u. { B } ) = ( |^| A i^i B ) |