Metamath Proof Explorer


Theorem intunsn

Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002)

Ref Expression
Hypothesis intunsn.1
|- B e. _V
Assertion intunsn
|- |^| ( A u. { B } ) = ( |^| A i^i B )

Proof

Step Hyp Ref Expression
1 intunsn.1
 |-  B e. _V
2 intun
 |-  |^| ( A u. { B } ) = ( |^| A i^i |^| { B } )
3 1 intsn
 |-  |^| { B } = B
4 3 ineq2i
 |-  ( |^| A i^i |^| { B } ) = ( |^| A i^i B )
5 2 4 eqtri
 |-  |^| ( A u. { B } ) = ( |^| A i^i B )