Metamath Proof Explorer


Theorem inundif

Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion inundif
|- ( ( A i^i B ) u. ( A \ B ) ) = A

Proof

Step Hyp Ref Expression
1 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
2 eldif
 |-  ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) )
3 1 2 orbi12i
 |-  ( ( x e. ( A i^i B ) \/ x e. ( A \ B ) ) <-> ( ( x e. A /\ x e. B ) \/ ( x e. A /\ -. x e. B ) ) )
4 pm4.42
 |-  ( x e. A <-> ( ( x e. A /\ x e. B ) \/ ( x e. A /\ -. x e. B ) ) )
5 3 4 bitr4i
 |-  ( ( x e. ( A i^i B ) \/ x e. ( A \ B ) ) <-> x e. A )
6 5 uneqri
 |-  ( ( A i^i B ) u. ( A \ B ) ) = A