Metamath Proof Explorer


Theorem invdisjrab

Description: The restricted class abstractions { x e. B | C = y } for distinct y e. A are disjoint. (Contributed by AV, 6-May-2020)

Ref Expression
Assertion invdisjrab
|- Disj_ y e. A { x e. B | C = y }

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ x z
2 nfcv
 |-  F/_ x B
3 nfcsb1v
 |-  F/_ x [_ z / x ]_ C
4 3 nfeq1
 |-  F/ x [_ z / x ]_ C = y
5 csbeq1a
 |-  ( x = z -> C = [_ z / x ]_ C )
6 5 eqeq1d
 |-  ( x = z -> ( C = y <-> [_ z / x ]_ C = y ) )
7 1 2 4 6 elrabf
 |-  ( z e. { x e. B | C = y } <-> ( z e. B /\ [_ z / x ]_ C = y ) )
8 ax-1
 |-  ( [_ z / x ]_ C = y -> ( y e. A -> [_ z / x ]_ C = y ) )
9 7 8 simplbiim
 |-  ( z e. { x e. B | C = y } -> ( y e. A -> [_ z / x ]_ C = y ) )
10 9 impcom
 |-  ( ( y e. A /\ z e. { x e. B | C = y } ) -> [_ z / x ]_ C = y )
11 10 rgen2
 |-  A. y e. A A. z e. { x e. B | C = y } [_ z / x ]_ C = y
12 invdisj
 |-  ( A. y e. A A. z e. { x e. B | C = y } [_ z / x ]_ C = y -> Disj_ y e. A { x e. B | C = y } )
13 11 12 ax-mp
 |-  Disj_ y e. A { x e. B | C = y }