| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcv |  |-  F/_ x z | 
						
							| 2 |  | nfcv |  |-  F/_ x B | 
						
							| 3 |  | nfcsb1v |  |-  F/_ x [_ z / x ]_ C | 
						
							| 4 | 3 | nfeq1 |  |-  F/ x [_ z / x ]_ C = y | 
						
							| 5 |  | csbeq1a |  |-  ( x = z -> C = [_ z / x ]_ C ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( x = z -> ( C = y <-> [_ z / x ]_ C = y ) ) | 
						
							| 7 | 1 2 4 6 | elrabf |  |-  ( z e. { x e. B | C = y } <-> ( z e. B /\ [_ z / x ]_ C = y ) ) | 
						
							| 8 |  | simprr |  |-  ( ( y e. A /\ ( z e. B /\ [_ z / x ]_ C = y ) ) -> [_ z / x ]_ C = y ) | 
						
							| 9 | 7 8 | sylan2b |  |-  ( ( y e. A /\ z e. { x e. B | C = y } ) -> [_ z / x ]_ C = y ) | 
						
							| 10 | 9 | rgen2 |  |-  A. y e. A A. z e. { x e. B | C = y } [_ z / x ]_ C = y | 
						
							| 11 |  | invdisj |  |-  ( A. y e. A A. z e. { x e. B | C = y } [_ z / x ]_ C = y -> Disj_ y e. A { x e. B | C = y } ) | 
						
							| 12 | 10 11 | ax-mp |  |-  Disj_ y e. A { x e. B | C = y } |