| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inveq.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | inveq.n |  |-  N = ( Inv ` C ) | 
						
							| 3 |  | inveq.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | inveq.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | inveq.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | eqid |  |-  ( Sect ` C ) = ( Sect ` C ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> C e. Cat ) | 
						
							| 8 | 5 | adantr |  |-  ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> Y e. B ) | 
						
							| 9 | 4 | adantr |  |-  ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> X e. B ) | 
						
							| 10 | 1 2 3 4 5 6 | isinv |  |-  ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) | 
						
							| 11 |  | simpr |  |-  ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) -> G ( Y ( Sect ` C ) X ) F ) | 
						
							| 12 | 10 11 | biimtrdi |  |-  ( ph -> ( F ( X N Y ) G -> G ( Y ( Sect ` C ) X ) F ) ) | 
						
							| 13 | 12 | com12 |  |-  ( F ( X N Y ) G -> ( ph -> G ( Y ( Sect ` C ) X ) F ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> ( ph -> G ( Y ( Sect ` C ) X ) F ) ) | 
						
							| 15 | 14 | impcom |  |-  ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> G ( Y ( Sect ` C ) X ) F ) | 
						
							| 16 | 1 2 3 4 5 6 | isinv |  |-  ( ph -> ( F ( X N Y ) K <-> ( F ( X ( Sect ` C ) Y ) K /\ K ( Y ( Sect ` C ) X ) F ) ) ) | 
						
							| 17 |  | simpl |  |-  ( ( F ( X ( Sect ` C ) Y ) K /\ K ( Y ( Sect ` C ) X ) F ) -> F ( X ( Sect ` C ) Y ) K ) | 
						
							| 18 | 16 17 | biimtrdi |  |-  ( ph -> ( F ( X N Y ) K -> F ( X ( Sect ` C ) Y ) K ) ) | 
						
							| 19 | 18 | adantld |  |-  ( ph -> ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> F ( X ( Sect ` C ) Y ) K ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> F ( X ( Sect ` C ) Y ) K ) | 
						
							| 21 | 1 6 7 8 9 15 20 | sectcan |  |-  ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> G = K ) | 
						
							| 22 | 21 | ex |  |-  ( ph -> ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> G = K ) ) |