| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
|- B = ( Base ` C ) |
| 2 |
|
invfval.n |
|- N = ( Inv ` C ) |
| 3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
invfval.x |
|- ( ph -> X e. B ) |
| 5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
| 6 |
|
isoval.n |
|- I = ( Iso ` C ) |
| 7 |
1 2 3 4 5 6
|
invf |
|- ( ph -> ( X N Y ) : ( X I Y ) --> ( Y I X ) ) |
| 8 |
7
|
ffnd |
|- ( ph -> ( X N Y ) Fn ( X I Y ) ) |
| 9 |
1 2 3 5 4 6
|
invf |
|- ( ph -> ( Y N X ) : ( Y I X ) --> ( X I Y ) ) |
| 10 |
9
|
ffnd |
|- ( ph -> ( Y N X ) Fn ( Y I X ) ) |
| 11 |
1 2 3 4 5
|
invsym2 |
|- ( ph -> `' ( X N Y ) = ( Y N X ) ) |
| 12 |
11
|
fneq1d |
|- ( ph -> ( `' ( X N Y ) Fn ( Y I X ) <-> ( Y N X ) Fn ( Y I X ) ) ) |
| 13 |
10 12
|
mpbird |
|- ( ph -> `' ( X N Y ) Fn ( Y I X ) ) |
| 14 |
|
dff1o4 |
|- ( ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) <-> ( ( X N Y ) Fn ( X I Y ) /\ `' ( X N Y ) Fn ( Y I X ) ) ) |
| 15 |
8 13 14
|
sylanbrc |
|- ( ph -> ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) ) |