Metamath Proof Explorer


Theorem invffval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses invfval.b
|- B = ( Base ` C )
invfval.n
|- N = ( Inv ` C )
invfval.c
|- ( ph -> C e. Cat )
invffval.s
|- S = ( Sect ` C )
Assertion invffval
|- ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) )

Proof

Step Hyp Ref Expression
1 invfval.b
 |-  B = ( Base ` C )
2 invfval.n
 |-  N = ( Inv ` C )
3 invfval.c
 |-  ( ph -> C e. Cat )
4 invffval.s
 |-  S = ( Sect ` C )
5 fveq2
 |-  ( c = C -> ( Base ` c ) = ( Base ` C ) )
6 5 1 eqtr4di
 |-  ( c = C -> ( Base ` c ) = B )
7 fveq2
 |-  ( c = C -> ( Sect ` c ) = ( Sect ` C ) )
8 7 4 eqtr4di
 |-  ( c = C -> ( Sect ` c ) = S )
9 8 oveqd
 |-  ( c = C -> ( x ( Sect ` c ) y ) = ( x S y ) )
10 8 oveqd
 |-  ( c = C -> ( y ( Sect ` c ) x ) = ( y S x ) )
11 10 cnveqd
 |-  ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y S x ) )
12 9 11 ineq12d
 |-  ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x S y ) i^i `' ( y S x ) ) )
13 6 6 12 mpoeq123dv
 |-  ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) )
14 df-inv
 |-  Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) )
15 1 fvexi
 |-  B e. _V
16 15 15 mpoex
 |-  ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) e. _V
17 13 14 16 fvmpt
 |-  ( C e. Cat -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) )
18 3 17 syl
 |-  ( ph -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) )
19 2 18 eqtrid
 |-  ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) )