| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
|- B = ( Base ` C ) |
| 2 |
|
invfval.n |
|- N = ( Inv ` C ) |
| 3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
invffval.s |
|- S = ( Sect ` C ) |
| 5 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
| 7 |
|
fveq2 |
|- ( c = C -> ( Sect ` c ) = ( Sect ` C ) ) |
| 8 |
7 4
|
eqtr4di |
|- ( c = C -> ( Sect ` c ) = S ) |
| 9 |
8
|
oveqd |
|- ( c = C -> ( x ( Sect ` c ) y ) = ( x S y ) ) |
| 10 |
8
|
oveqd |
|- ( c = C -> ( y ( Sect ` c ) x ) = ( y S x ) ) |
| 11 |
10
|
cnveqd |
|- ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y S x ) ) |
| 12 |
9 11
|
ineq12d |
|- ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x S y ) i^i `' ( y S x ) ) ) |
| 13 |
6 6 12
|
mpoeq123dv |
|- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| 14 |
|
df-inv |
|- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
| 15 |
1
|
fvexi |
|- B e. _V |
| 16 |
15 15
|
mpoex |
|- ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) e. _V |
| 17 |
13 14 16
|
fvmpt |
|- ( C e. Cat -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| 18 |
3 17
|
syl |
|- ( ph -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| 19 |
2 18
|
eqtrid |
|- ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |