Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
|- B = ( Base ` C ) |
2 |
|
invfval.n |
|- N = ( Inv ` C ) |
3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
4 |
|
invfval.x |
|- ( ph -> X e. B ) |
5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
6 |
|
invfval.s |
|- S = ( Sect ` C ) |
7 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
8 |
7 1
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
9 |
|
fveq2 |
|- ( c = C -> ( Sect ` c ) = ( Sect ` C ) ) |
10 |
9 6
|
eqtr4di |
|- ( c = C -> ( Sect ` c ) = S ) |
11 |
10
|
oveqd |
|- ( c = C -> ( x ( Sect ` c ) y ) = ( x S y ) ) |
12 |
10
|
oveqd |
|- ( c = C -> ( y ( Sect ` c ) x ) = ( y S x ) ) |
13 |
12
|
cnveqd |
|- ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y S x ) ) |
14 |
11 13
|
ineq12d |
|- ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x S y ) i^i `' ( y S x ) ) ) |
15 |
8 8 14
|
mpoeq123dv |
|- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
16 |
|
df-inv |
|- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
17 |
1
|
fvexi |
|- B e. _V |
18 |
17 17
|
mpoex |
|- ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) e. _V |
19 |
15 16 18
|
fvmpt |
|- ( C e. Cat -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
20 |
3 19
|
syl |
|- ( ph -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
21 |
2 20
|
eqtrid |
|- ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |