Metamath Proof Explorer


Theorem invfval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b
|- B = ( Base ` C )
invfval.n
|- N = ( Inv ` C )
invfval.c
|- ( ph -> C e. Cat )
invfval.x
|- ( ph -> X e. B )
invfval.y
|- ( ph -> Y e. B )
invfval.s
|- S = ( Sect ` C )
Assertion invfval
|- ( ph -> ( X N Y ) = ( ( X S Y ) i^i `' ( Y S X ) ) )

Proof

Step Hyp Ref Expression
1 invfval.b
 |-  B = ( Base ` C )
2 invfval.n
 |-  N = ( Inv ` C )
3 invfval.c
 |-  ( ph -> C e. Cat )
4 invfval.x
 |-  ( ph -> X e. B )
5 invfval.y
 |-  ( ph -> Y e. B )
6 invfval.s
 |-  S = ( Sect ` C )
7 1 2 3 4 4 6 invffval
 |-  ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) )
8 simprl
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X )
9 simprr
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y )
10 8 9 oveq12d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x S y ) = ( X S Y ) )
11 9 8 oveq12d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y S x ) = ( Y S X ) )
12 11 cnveqd
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> `' ( y S x ) = `' ( Y S X ) )
13 10 12 ineq12d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( x S y ) i^i `' ( y S x ) ) = ( ( X S Y ) i^i `' ( Y S X ) ) )
14 ovex
 |-  ( X S Y ) e. _V
15 14 inex1
 |-  ( ( X S Y ) i^i `' ( Y S X ) ) e. _V
16 15 a1i
 |-  ( ph -> ( ( X S Y ) i^i `' ( Y S X ) ) e. _V )
17 7 13 4 5 16 ovmpod
 |-  ( ph -> ( X N Y ) = ( ( X S Y ) i^i `' ( Y S X ) ) )