Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
|- B = ( Base ` C ) |
2 |
|
invfval.n |
|- N = ( Inv ` C ) |
3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
4 |
|
invfval.x |
|- ( ph -> X e. B ) |
5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
6 |
|
invfval.s |
|- S = ( Sect ` C ) |
7 |
1 2 3 4 4 6
|
invffval |
|- ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
8 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
9 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
10 |
8 9
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x S y ) = ( X S Y ) ) |
11 |
9 8
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y S x ) = ( Y S X ) ) |
12 |
11
|
cnveqd |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> `' ( y S x ) = `' ( Y S X ) ) |
13 |
10 12
|
ineq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( x S y ) i^i `' ( y S x ) ) = ( ( X S Y ) i^i `' ( Y S X ) ) ) |
14 |
|
ovex |
|- ( X S Y ) e. _V |
15 |
14
|
inex1 |
|- ( ( X S Y ) i^i `' ( Y S X ) ) e. _V |
16 |
15
|
a1i |
|- ( ph -> ( ( X S Y ) i^i `' ( Y S X ) ) e. _V ) |
17 |
7 13 4 5 16
|
ovmpod |
|- ( ph -> ( X N Y ) = ( ( X S Y ) i^i `' ( Y S X ) ) ) |