| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
|- B = ( Base ` C ) |
| 2 |
|
invfval.n |
|- N = ( Inv ` C ) |
| 3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
invfval.x |
|- ( ph -> X e. B ) |
| 5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
| 6 |
|
isoval.n |
|- I = ( Iso ` C ) |
| 7 |
|
invinv.f |
|- ( ph -> F e. ( X I Y ) ) |
| 8 |
1 2 3 4 5
|
invsym2 |
|- ( ph -> `' ( X N Y ) = ( Y N X ) ) |
| 9 |
8
|
fveq1d |
|- ( ph -> ( `' ( X N Y ) ` ( ( X N Y ) ` F ) ) = ( ( Y N X ) ` ( ( X N Y ) ` F ) ) ) |
| 10 |
1 2 3 4 5 6
|
invf1o |
|- ( ph -> ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) ) |
| 11 |
|
f1ocnvfv1 |
|- ( ( ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) /\ F e. ( X I Y ) ) -> ( `' ( X N Y ) ` ( ( X N Y ) ` F ) ) = F ) |
| 12 |
10 7 11
|
syl2anc |
|- ( ph -> ( `' ( X N Y ) ` ( ( X N Y ) ` F ) ) = F ) |
| 13 |
9 12
|
eqtr3d |
|- ( ph -> ( ( Y N X ) ` ( ( X N Y ) ` F ) ) = F ) |