Metamath Proof Explorer


Theorem inviso1

Description: If G is an inverse to F , then F is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses invfval.b
|- B = ( Base ` C )
invfval.n
|- N = ( Inv ` C )
invfval.c
|- ( ph -> C e. Cat )
invfval.x
|- ( ph -> X e. B )
invfval.y
|- ( ph -> Y e. B )
isoval.n
|- I = ( Iso ` C )
inviso1.1
|- ( ph -> F ( X N Y ) G )
Assertion inviso1
|- ( ph -> F e. ( X I Y ) )

Proof

Step Hyp Ref Expression
1 invfval.b
 |-  B = ( Base ` C )
2 invfval.n
 |-  N = ( Inv ` C )
3 invfval.c
 |-  ( ph -> C e. Cat )
4 invfval.x
 |-  ( ph -> X e. B )
5 invfval.y
 |-  ( ph -> Y e. B )
6 isoval.n
 |-  I = ( Iso ` C )
7 inviso1.1
 |-  ( ph -> F ( X N Y ) G )
8 1 2 3 4 5 invfun
 |-  ( ph -> Fun ( X N Y ) )
9 funrel
 |-  ( Fun ( X N Y ) -> Rel ( X N Y ) )
10 8 9 syl
 |-  ( ph -> Rel ( X N Y ) )
11 releldm
 |-  ( ( Rel ( X N Y ) /\ F ( X N Y ) G ) -> F e. dom ( X N Y ) )
12 10 7 11 syl2anc
 |-  ( ph -> F e. dom ( X N Y ) )
13 1 2 3 4 5 6 isoval
 |-  ( ph -> ( X I Y ) = dom ( X N Y ) )
14 12 13 eleqtrrd
 |-  ( ph -> F e. ( X I Y ) )