Description: If G is an inverse to F , then G is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invfval.x | |- ( ph -> X e. B ) |
||
| invfval.y | |- ( ph -> Y e. B ) |
||
| isoval.n | |- I = ( Iso ` C ) |
||
| inviso1.1 | |- ( ph -> F ( X N Y ) G ) |
||
| Assertion | inviso2 | |- ( ph -> G e. ( Y I X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invfval.x | |- ( ph -> X e. B ) |
|
| 5 | invfval.y | |- ( ph -> Y e. B ) |
|
| 6 | isoval.n | |- I = ( Iso ` C ) |
|
| 7 | inviso1.1 | |- ( ph -> F ( X N Y ) G ) |
|
| 8 | 1 2 3 4 5 | invsym | |- ( ph -> ( F ( X N Y ) G <-> G ( Y N X ) F ) ) |
| 9 | 7 8 | mpbid | |- ( ph -> G ( Y N X ) F ) |
| 10 | 1 2 3 5 4 6 9 | inviso1 | |- ( ph -> G e. ( Y I X ) ) |