Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invisoinv.b | |- B = ( Base ` C ) |
|
invisoinv.i | |- I = ( Iso ` C ) |
||
invisoinv.n | |- N = ( Inv ` C ) |
||
invisoinv.c | |- ( ph -> C e. Cat ) |
||
invisoinv.x | |- ( ph -> X e. B ) |
||
invisoinv.y | |- ( ph -> Y e. B ) |
||
invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
||
Assertion | invisoinvr | |- ( ph -> F ( X N Y ) ( ( X N Y ) ` F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | |- B = ( Base ` C ) |
|
2 | invisoinv.i | |- I = ( Iso ` C ) |
|
3 | invisoinv.n | |- N = ( Inv ` C ) |
|
4 | invisoinv.c | |- ( ph -> C e. Cat ) |
|
5 | invisoinv.x | |- ( ph -> X e. B ) |
|
6 | invisoinv.y | |- ( ph -> Y e. B ) |
|
7 | invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
|
8 | 1 2 3 4 5 6 7 | invisoinvl | |- ( ph -> ( ( X N Y ) ` F ) ( Y N X ) F ) |
9 | 1 3 4 5 6 | invsym | |- ( ph -> ( F ( X N Y ) ( ( X N Y ) ` F ) <-> ( ( X N Y ) ` F ) ( Y N X ) F ) ) |
10 | 8 9 | mpbird | |- ( ph -> F ( X N Y ) ( ( X N Y ) ` F ) ) |