Step |
Hyp |
Ref |
Expression |
1 |
|
invlmhm.b |
|- I = ( invg ` M ) |
2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
3 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
4 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
5 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
6 |
|
id |
|- ( M e. LMod -> M e. LMod ) |
7 |
|
eqidd |
|- ( M e. LMod -> ( Scalar ` M ) = ( Scalar ` M ) ) |
8 |
|
lmodabl |
|- ( M e. LMod -> M e. Abel ) |
9 |
2 1
|
invghm |
|- ( M e. Abel <-> I e. ( M GrpHom M ) ) |
10 |
8 9
|
sylib |
|- ( M e. LMod -> I e. ( M GrpHom M ) ) |
11 |
2 4 3 1 5
|
lmodvsinv2 |
|- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( x ( .s ` M ) ( I ` y ) ) = ( I ` ( x ( .s ` M ) y ) ) ) |
12 |
11
|
eqcomd |
|- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( I ` ( x ( .s ` M ) y ) ) = ( x ( .s ` M ) ( I ` y ) ) ) |
13 |
12
|
3expb |
|- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( I ` ( x ( .s ` M ) y ) ) = ( x ( .s ` M ) ( I ` y ) ) ) |
14 |
2 3 3 4 4 5 6 6 7 10 13
|
islmhmd |
|- ( M e. LMod -> I e. ( M LMHom M ) ) |