Step |
Hyp |
Ref |
Expression |
1 |
|
invoppggim.o |
|- O = ( oppG ` G ) |
2 |
|
invoppggim.i |
|- I = ( invg ` G ) |
3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
4 |
1 3
|
oppgbas |
|- ( Base ` G ) = ( Base ` O ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
|
eqid |
|- ( +g ` O ) = ( +g ` O ) |
7 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
8 |
1
|
oppggrp |
|- ( G e. Grp -> O e. Grp ) |
9 |
3 2
|
grpinvf |
|- ( G e. Grp -> I : ( Base ` G ) --> ( Base ` G ) ) |
10 |
3 5 2
|
grpinvadd |
|- ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) ) |
11 |
10
|
3expb |
|- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) ) |
12 |
5 1 6
|
oppgplus |
|- ( ( I ` x ) ( +g ` O ) ( I ` y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) |
13 |
11 12
|
eqtr4di |
|- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` x ) ( +g ` O ) ( I ` y ) ) ) |
14 |
3 4 5 6 7 8 9 13
|
isghmd |
|- ( G e. Grp -> I e. ( G GrpHom O ) ) |
15 |
3 2 7
|
grpinvf1o |
|- ( G e. Grp -> I : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) |
16 |
3 4
|
isgim |
|- ( I e. ( G GrpIso O ) <-> ( I e. ( G GrpHom O ) /\ I : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) ) |
17 |
14 15 16
|
sylanbrc |
|- ( G e. Grp -> I e. ( G GrpIso O ) ) |