| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invoppggim.o |  |-  O = ( oppG ` G ) | 
						
							| 2 |  | invoppggim.i |  |-  I = ( invg ` G ) | 
						
							| 3 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 4 | 1 3 | oppgbas |  |-  ( Base ` G ) = ( Base ` O ) | 
						
							| 5 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 6 |  | eqid |  |-  ( +g ` O ) = ( +g ` O ) | 
						
							| 7 |  | id |  |-  ( G e. Grp -> G e. Grp ) | 
						
							| 8 | 1 | oppggrp |  |-  ( G e. Grp -> O e. Grp ) | 
						
							| 9 | 3 2 | grpinvf |  |-  ( G e. Grp -> I : ( Base ` G ) --> ( Base ` G ) ) | 
						
							| 10 | 3 5 2 | grpinvadd |  |-  ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) ) | 
						
							| 11 | 10 | 3expb |  |-  ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) ) | 
						
							| 12 | 5 1 6 | oppgplus |  |-  ( ( I ` x ) ( +g ` O ) ( I ` y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) | 
						
							| 13 | 11 12 | eqtr4di |  |-  ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` x ) ( +g ` O ) ( I ` y ) ) ) | 
						
							| 14 | 3 4 5 6 7 8 9 13 | isghmd |  |-  ( G e. Grp -> I e. ( G GrpHom O ) ) | 
						
							| 15 | 3 2 7 | grpinvf1o |  |-  ( G e. Grp -> I : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) | 
						
							| 16 | 3 4 | isgim |  |-  ( I e. ( G GrpIso O ) <-> ( I e. ( G GrpHom O ) /\ I : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) ) | 
						
							| 17 | 14 15 16 | sylanbrc |  |-  ( G e. Grp -> I e. ( G GrpIso O ) ) |