| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulrcn.j |
|- J = ( TopOpen ` R ) |
| 2 |
|
invrcn.i |
|- I = ( invr ` R ) |
| 3 |
|
invrcn.u |
|- U = ( Unit ` R ) |
| 4 |
|
tdrgtps |
|- ( R e. TopDRing -> R e. TopSp ) |
| 5 |
1
|
tpstop |
|- ( R e. TopSp -> J e. Top ) |
| 6 |
|
cnrest2r |
|- ( J e. Top -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) ) |
| 7 |
4 5 6
|
3syl |
|- ( R e. TopDRing -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) ) |
| 8 |
1 2 3
|
invrcn2 |
|- ( R e. TopDRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) |
| 9 |
7 8
|
sseldd |
|- ( R e. TopDRing -> I e. ( ( J |`t U ) Cn J ) ) |