Metamath Proof Explorer


Theorem invrcn

Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j
|- J = ( TopOpen ` R )
invrcn.i
|- I = ( invr ` R )
invrcn.u
|- U = ( Unit ` R )
Assertion invrcn
|- ( R e. TopDRing -> I e. ( ( J |`t U ) Cn J ) )

Proof

Step Hyp Ref Expression
1 mulrcn.j
 |-  J = ( TopOpen ` R )
2 invrcn.i
 |-  I = ( invr ` R )
3 invrcn.u
 |-  U = ( Unit ` R )
4 tdrgtps
 |-  ( R e. TopDRing -> R e. TopSp )
5 1 tpstop
 |-  ( R e. TopSp -> J e. Top )
6 cnrest2r
 |-  ( J e. Top -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) )
7 4 5 6 3syl
 |-  ( R e. TopDRing -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) )
8 1 2 3 invrcn2
 |-  ( R e. TopDRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) )
9 7 8 sseldd
 |-  ( R e. TopDRing -> I e. ( ( J |`t U ) Cn J ) )