Step |
Hyp |
Ref |
Expression |
1 |
|
mulrcn.j |
|- J = ( TopOpen ` R ) |
2 |
|
invrcn.i |
|- I = ( invr ` R ) |
3 |
|
invrcn.u |
|- U = ( Unit ` R ) |
4 |
|
tdrgtps |
|- ( R e. TopDRing -> R e. TopSp ) |
5 |
1
|
tpstop |
|- ( R e. TopSp -> J e. Top ) |
6 |
|
cnrest2r |
|- ( J e. Top -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) ) |
7 |
4 5 6
|
3syl |
|- ( R e. TopDRing -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) ) |
8 |
1 2 3
|
invrcn2 |
|- ( R e. TopDRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) |
9 |
7 8
|
sseldd |
|- ( R e. TopDRing -> I e. ( ( J |`t U ) Cn J ) ) |