Step |
Hyp |
Ref |
Expression |
1 |
|
rngidpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
rngidpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
rngidpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
4 |
|
eqid |
|- ( Unit ` K ) = ( Unit ` K ) |
5 |
|
eqid |
|- ( ( mulGrp ` K ) |`s ( Unit ` K ) ) = ( ( mulGrp ` K ) |`s ( Unit ` K ) ) |
6 |
4 5
|
unitgrpbas |
|- ( Unit ` K ) = ( Base ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
7 |
6
|
a1i |
|- ( ph -> ( Unit ` K ) = ( Base ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) ) |
8 |
1 2 3
|
unitpropd |
|- ( ph -> ( Unit ` K ) = ( Unit ` L ) ) |
9 |
|
eqid |
|- ( Unit ` L ) = ( Unit ` L ) |
10 |
|
eqid |
|- ( ( mulGrp ` L ) |`s ( Unit ` L ) ) = ( ( mulGrp ` L ) |`s ( Unit ` L ) ) |
11 |
9 10
|
unitgrpbas |
|- ( Unit ` L ) = ( Base ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
12 |
8 11
|
eqtrdi |
|- ( ph -> ( Unit ` K ) = ( Base ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 4
|
unitss |
|- ( Unit ` K ) C_ ( Base ` K ) |
15 |
14 1
|
sseqtrrid |
|- ( ph -> ( Unit ` K ) C_ B ) |
16 |
15
|
sselda |
|- ( ( ph /\ x e. ( Unit ` K ) ) -> x e. B ) |
17 |
15
|
sselda |
|- ( ( ph /\ y e. ( Unit ` K ) ) -> y e. B ) |
18 |
16 17
|
anim12dan |
|- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x e. B /\ y e. B ) ) |
19 |
18 3
|
syldan |
|- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
20 |
|
fvex |
|- ( Unit ` K ) e. _V |
21 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
22 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
23 |
21 22
|
mgpplusg |
|- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
24 |
5 23
|
ressplusg |
|- ( ( Unit ` K ) e. _V -> ( .r ` K ) = ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) ) |
25 |
20 24
|
ax-mp |
|- ( .r ` K ) = ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
26 |
25
|
oveqi |
|- ( x ( .r ` K ) y ) = ( x ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) y ) |
27 |
|
fvex |
|- ( Unit ` L ) e. _V |
28 |
|
eqid |
|- ( mulGrp ` L ) = ( mulGrp ` L ) |
29 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
30 |
28 29
|
mgpplusg |
|- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
31 |
10 30
|
ressplusg |
|- ( ( Unit ` L ) e. _V -> ( .r ` L ) = ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
32 |
27 31
|
ax-mp |
|- ( .r ` L ) = ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
33 |
32
|
oveqi |
|- ( x ( .r ` L ) y ) = ( x ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) y ) |
34 |
19 26 33
|
3eqtr3g |
|- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) y ) ) |
35 |
7 12 34
|
grpinvpropd |
|- ( ph -> ( invg ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) = ( invg ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
36 |
|
eqid |
|- ( invr ` K ) = ( invr ` K ) |
37 |
4 5 36
|
invrfval |
|- ( invr ` K ) = ( invg ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
38 |
|
eqid |
|- ( invr ` L ) = ( invr ` L ) |
39 |
9 10 38
|
invrfval |
|- ( invr ` L ) = ( invg ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
40 |
35 37 39
|
3eqtr4g |
|- ( ph -> ( invr ` K ) = ( invr ` L ) ) |