Metamath Proof Explorer


Theorem invss

Description: The inverse relation is a relation between morphisms F : X --> Y and their inverses G : Y --> X . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b
|- B = ( Base ` C )
invfval.n
|- N = ( Inv ` C )
invfval.c
|- ( ph -> C e. Cat )
invfval.x
|- ( ph -> X e. B )
invfval.y
|- ( ph -> Y e. B )
invss.h
|- H = ( Hom ` C )
Assertion invss
|- ( ph -> ( X N Y ) C_ ( ( X H Y ) X. ( Y H X ) ) )

Proof

Step Hyp Ref Expression
1 invfval.b
 |-  B = ( Base ` C )
2 invfval.n
 |-  N = ( Inv ` C )
3 invfval.c
 |-  ( ph -> C e. Cat )
4 invfval.x
 |-  ( ph -> X e. B )
5 invfval.y
 |-  ( ph -> Y e. B )
6 invss.h
 |-  H = ( Hom ` C )
7 eqid
 |-  ( Sect ` C ) = ( Sect ` C )
8 1 2 3 4 5 7 invfval
 |-  ( ph -> ( X N Y ) = ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) )
9 inss1
 |-  ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) C_ ( X ( Sect ` C ) Y )
10 8 9 eqsstrdi
 |-  ( ph -> ( X N Y ) C_ ( X ( Sect ` C ) Y ) )
11 eqid
 |-  ( comp ` C ) = ( comp ` C )
12 eqid
 |-  ( Id ` C ) = ( Id ` C )
13 1 6 11 12 7 3 4 5 sectss
 |-  ( ph -> ( X ( Sect ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) )
14 10 13 sstrd
 |-  ( ph -> ( X N Y ) C_ ( ( X H Y ) X. ( Y H X ) ) )