Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
|- B = ( Base ` C ) |
2 |
|
invfval.n |
|- N = ( Inv ` C ) |
3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
4 |
|
invfval.x |
|- ( ph -> X e. B ) |
5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
6 |
|
invss.h |
|- H = ( Hom ` C ) |
7 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
8 |
1 2 3 4 5 7
|
invfval |
|- ( ph -> ( X N Y ) = ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) ) |
9 |
|
inss1 |
|- ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) C_ ( X ( Sect ` C ) Y ) |
10 |
8 9
|
eqsstrdi |
|- ( ph -> ( X N Y ) C_ ( X ( Sect ` C ) Y ) ) |
11 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
12 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
13 |
1 6 11 12 7 3 4 5
|
sectss |
|- ( ph -> ( X ( Sect ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |
14 |
10 13
|
sstrd |
|- ( ph -> ( X N Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |