| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
|- B = ( Base ` C ) |
| 2 |
|
invfval.n |
|- N = ( Inv ` C ) |
| 3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
invfval.x |
|- ( ph -> X e. B ) |
| 5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
| 6 |
|
invss.h |
|- H = ( Hom ` C ) |
| 7 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
| 8 |
1 2 3 4 5 7
|
invfval |
|- ( ph -> ( X N Y ) = ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) ) |
| 9 |
|
inss1 |
|- ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) C_ ( X ( Sect ` C ) Y ) |
| 10 |
8 9
|
eqsstrdi |
|- ( ph -> ( X N Y ) C_ ( X ( Sect ` C ) Y ) ) |
| 11 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 12 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 13 |
1 6 11 12 7 3 4 5
|
sectss |
|- ( ph -> ( X ( Sect ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |
| 14 |
10 13
|
sstrd |
|- ( ph -> ( X N Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |