| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invfval.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | invfval.n |  |-  N = ( Inv ` C ) | 
						
							| 3 |  | invfval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | invfval.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | invfval.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | eqid |  |-  ( Sect ` C ) = ( Sect ` C ) | 
						
							| 7 | 1 2 3 4 5 6 | isinv |  |-  ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) | 
						
							| 8 | 7 | biancomd |  |-  ( ph -> ( F ( X N Y ) G <-> ( G ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) G ) ) ) | 
						
							| 9 | 1 2 3 5 4 6 | isinv |  |-  ( ph -> ( G ( Y N X ) F <-> ( G ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) G ) ) ) | 
						
							| 10 | 8 9 | bitr4d |  |-  ( ph -> ( F ( X N Y ) G <-> G ( Y N X ) F ) ) |