Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
|- B = ( Base ` C ) |
2 |
|
invfval.n |
|- N = ( Inv ` C ) |
3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
4 |
|
invfval.x |
|- ( ph -> X e. B ) |
5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
7 |
1 2 3 5 4 6
|
invss |
|- ( ph -> ( Y N X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) ) |
8 |
|
relxp |
|- Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) |
9 |
|
relss |
|- ( ( Y N X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> ( Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> Rel ( Y N X ) ) ) |
10 |
7 8 9
|
mpisyl |
|- ( ph -> Rel ( Y N X ) ) |
11 |
|
relcnv |
|- Rel `' ( X N Y ) |
12 |
10 11
|
jctil |
|- ( ph -> ( Rel `' ( X N Y ) /\ Rel ( Y N X ) ) ) |
13 |
1 2 3 4 5
|
invsym |
|- ( ph -> ( f ( X N Y ) g <-> g ( Y N X ) f ) ) |
14 |
|
vex |
|- g e. _V |
15 |
|
vex |
|- f e. _V |
16 |
14 15
|
brcnv |
|- ( g `' ( X N Y ) f <-> f ( X N Y ) g ) |
17 |
|
df-br |
|- ( g `' ( X N Y ) f <-> <. g , f >. e. `' ( X N Y ) ) |
18 |
16 17
|
bitr3i |
|- ( f ( X N Y ) g <-> <. g , f >. e. `' ( X N Y ) ) |
19 |
|
df-br |
|- ( g ( Y N X ) f <-> <. g , f >. e. ( Y N X ) ) |
20 |
13 18 19
|
3bitr3g |
|- ( ph -> ( <. g , f >. e. `' ( X N Y ) <-> <. g , f >. e. ( Y N X ) ) ) |
21 |
20
|
eqrelrdv2 |
|- ( ( ( Rel `' ( X N Y ) /\ Rel ( Y N X ) ) /\ ph ) -> `' ( X N Y ) = ( Y N X ) ) |
22 |
12 21
|
mpancom |
|- ( ph -> `' ( X N Y ) = ( Y N X ) ) |