| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invfval.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | invfval.n |  |-  N = ( Inv ` C ) | 
						
							| 3 |  | invfval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | invfval.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | invfval.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 7 | 1 2 3 5 4 6 | invss |  |-  ( ph -> ( Y N X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) ) | 
						
							| 8 |  | relxp |  |-  Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) | 
						
							| 9 |  | relss |  |-  ( ( Y N X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> ( Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> Rel ( Y N X ) ) ) | 
						
							| 10 | 7 8 9 | mpisyl |  |-  ( ph -> Rel ( Y N X ) ) | 
						
							| 11 |  | relcnv |  |-  Rel `' ( X N Y ) | 
						
							| 12 | 10 11 | jctil |  |-  ( ph -> ( Rel `' ( X N Y ) /\ Rel ( Y N X ) ) ) | 
						
							| 13 | 1 2 3 4 5 | invsym |  |-  ( ph -> ( f ( X N Y ) g <-> g ( Y N X ) f ) ) | 
						
							| 14 |  | vex |  |-  g e. _V | 
						
							| 15 |  | vex |  |-  f e. _V | 
						
							| 16 | 14 15 | brcnv |  |-  ( g `' ( X N Y ) f <-> f ( X N Y ) g ) | 
						
							| 17 |  | df-br |  |-  ( g `' ( X N Y ) f <-> <. g , f >. e. `' ( X N Y ) ) | 
						
							| 18 | 16 17 | bitr3i |  |-  ( f ( X N Y ) g <-> <. g , f >. e. `' ( X N Y ) ) | 
						
							| 19 |  | df-br |  |-  ( g ( Y N X ) f <-> <. g , f >. e. ( Y N X ) ) | 
						
							| 20 | 13 18 19 | 3bitr3g |  |-  ( ph -> ( <. g , f >. e. `' ( X N Y ) <-> <. g , f >. e. ( Y N X ) ) ) | 
						
							| 21 | 20 | eqrelrdv2 |  |-  ( ( ( Rel `' ( X N Y ) /\ Rel ( Y N X ) ) /\ ph ) -> `' ( X N Y ) = ( Y N X ) ) | 
						
							| 22 | 12 21 | mpancom |  |-  ( ph -> `' ( X N Y ) = ( Y N X ) ) |