Metamath Proof Explorer


Theorem inxpssres

Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019)

Ref Expression
Assertion inxpssres
|- ( R i^i ( A X. B ) ) C_ ( R |` A )

Proof

Step Hyp Ref Expression
1 ssid
 |-  A C_ A
2 ssv
 |-  B C_ _V
3 xpss12
 |-  ( ( A C_ A /\ B C_ _V ) -> ( A X. B ) C_ ( A X. _V ) )
4 1 2 3 mp2an
 |-  ( A X. B ) C_ ( A X. _V )
5 sslin
 |-  ( ( A X. B ) C_ ( A X. _V ) -> ( R i^i ( A X. B ) ) C_ ( R i^i ( A X. _V ) ) )
6 4 5 ax-mp
 |-  ( R i^i ( A X. B ) ) C_ ( R i^i ( A X. _V ) )
7 df-res
 |-  ( R |` A ) = ( R i^i ( A X. _V ) )
8 6 7 sseqtrri
 |-  ( R i^i ( A X. B ) ) C_ ( R |` A )