Step |
Hyp |
Ref |
Expression |
1 |
|
iocval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,] B ) = { x e. RR* | ( A < x /\ x <_ B ) } ) |
2 |
1
|
eqeq1d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,] B ) = (/) <-> { x e. RR* | ( A < x /\ x <_ B ) } = (/) ) ) |
3 |
|
df-ne |
|- ( { x e. RR* | ( A < x /\ x <_ B ) } =/= (/) <-> -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) ) |
4 |
|
rabn0 |
|- ( { x e. RR* | ( A < x /\ x <_ B ) } =/= (/) <-> E. x e. RR* ( A < x /\ x <_ B ) ) |
5 |
3 4
|
bitr3i |
|- ( -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> E. x e. RR* ( A < x /\ x <_ B ) ) |
6 |
|
xrltletr |
|- ( ( A e. RR* /\ x e. RR* /\ B e. RR* ) -> ( ( A < x /\ x <_ B ) -> A < B ) ) |
7 |
6
|
3com23 |
|- ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) -> ( ( A < x /\ x <_ B ) -> A < B ) ) |
8 |
7
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. RR* ) -> ( ( A < x /\ x <_ B ) -> A < B ) ) |
9 |
8
|
rexlimdva |
|- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x <_ B ) -> A < B ) ) |
10 |
|
qbtwnxr |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
11 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
12 |
11
|
rexrd |
|- ( x e. QQ -> x e. RR* ) |
13 |
12
|
a1i |
|- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( x e. QQ -> x e. RR* ) ) |
14 |
|
xrltle |
|- ( ( x e. RR* /\ B e. RR* ) -> ( x < B -> x <_ B ) ) |
15 |
14
|
3ad2antr2 |
|- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( x < B -> x <_ B ) ) |
16 |
15
|
anim2d |
|- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( ( A < x /\ x < B ) -> ( A < x /\ x <_ B ) ) ) |
17 |
13 16
|
anim12d |
|- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) |
18 |
17
|
ex |
|- ( x e. RR* -> ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) ) |
19 |
12 18
|
syl |
|- ( x e. QQ -> ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) ) |
20 |
19
|
adantr |
|- ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) ) |
21 |
20
|
pm2.43b |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) |
22 |
21
|
reximdv2 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( E. x e. QQ ( A < x /\ x < B ) -> E. x e. RR* ( A < x /\ x <_ B ) ) ) |
23 |
10 22
|
mpd |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. RR* ( A < x /\ x <_ B ) ) |
24 |
23
|
3expia |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. RR* ( A < x /\ x <_ B ) ) ) |
25 |
9 24
|
impbid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x <_ B ) <-> A < B ) ) |
26 |
5 25
|
syl5bb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> A < B ) ) |
27 |
|
xrltnle |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) |
28 |
26 27
|
bitrd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> -. B <_ A ) ) |
29 |
28
|
con4bid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> B <_ A ) ) |
30 |
2 29
|
bitrd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,] B ) = (/) <-> B <_ A ) ) |