| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioccncflimc.a |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | ioccncflimc.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | ioccncflimc.altb |  |-  ( ph -> A < B ) | 
						
							| 4 |  | ioccncflimc.f |  |-  ( ph -> F e. ( ( A (,] B ) -cn-> CC ) ) | 
						
							| 5 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 6 | 2 | leidd |  |-  ( ph -> B <_ B ) | 
						
							| 7 | 1 5 5 3 6 | eliocd |  |-  ( ph -> B e. ( A (,] B ) ) | 
						
							| 8 | 4 7 | cnlimci |  |-  ( ph -> ( F ` B ) e. ( F limCC B ) ) | 
						
							| 9 |  | cncfrss |  |-  ( F e. ( ( A (,] B ) -cn-> CC ) -> ( A (,] B ) C_ CC ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> ( A (,] B ) C_ CC ) | 
						
							| 11 |  | ssid |  |-  CC C_ CC | 
						
							| 12 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 13 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) | 
						
							| 14 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 15 | 12 13 14 | cncfcn |  |-  ( ( ( A (,] B ) C_ CC /\ CC C_ CC ) -> ( ( A (,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) | 
						
							| 16 | 10 11 15 | sylancl |  |-  ( ph -> ( ( A (,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) | 
						
							| 17 | 4 16 | eleqtrd |  |-  ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) | 
						
							| 18 | 12 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 19 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,] B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) ) | 
						
							| 20 | 18 10 19 | sylancr |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) ) | 
						
							| 21 | 12 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 22 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 23 | 22 | restid |  |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) | 
						
							| 24 | 21 23 | ax-mp |  |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) | 
						
							| 25 | 24 | cnfldtopon |  |-  ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) | 
						
							| 26 |  | cncnp |  |-  ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) /\ ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) | 
						
							| 27 | 20 25 26 | sylancl |  |-  ( ph -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) | 
						
							| 28 | 17 27 | mpbid |  |-  ( ph -> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) | 
						
							| 29 | 28 | simpld |  |-  ( ph -> F : ( A (,] B ) --> CC ) | 
						
							| 30 |  | ioossioc |  |-  ( A (,) B ) C_ ( A (,] B ) | 
						
							| 31 | 30 | a1i |  |-  ( ph -> ( A (,) B ) C_ ( A (,] B ) ) | 
						
							| 32 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) | 
						
							| 33 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 34 | 22 | ntrtop |  |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) | 
						
							| 35 | 21 34 | ax-mp |  |-  ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC | 
						
							| 36 |  | undif |  |-  ( ( A (,] B ) C_ CC <-> ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) = CC ) | 
						
							| 37 | 10 36 | sylib |  |-  ( ph -> ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) = CC ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ph -> CC = ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ph -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) | 
						
							| 40 | 35 39 | eqtr3id |  |-  ( ph -> CC = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) | 
						
							| 41 | 33 40 | eleqtrd |  |-  ( ph -> B e. ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) | 
						
							| 42 | 41 7 | elind |  |-  ( ph -> B e. ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) | 
						
							| 43 | 21 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 44 |  | ssid |  |-  ( A (,] B ) C_ ( A (,] B ) | 
						
							| 45 | 44 | a1i |  |-  ( ph -> ( A (,] B ) C_ ( A (,] B ) ) | 
						
							| 46 | 22 13 | restntr |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,] B ) C_ CC /\ ( A (,] B ) C_ ( A (,] B ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) | 
						
							| 47 | 43 10 45 46 | syl3anc |  |-  ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) | 
						
							| 48 | 42 47 | eleqtrrd |  |-  ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) ) | 
						
							| 49 | 7 | snssd |  |-  ( ph -> { B } C_ ( A (,] B ) ) | 
						
							| 50 |  | ssequn2 |  |-  ( { B } C_ ( A (,] B ) <-> ( ( A (,] B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 51 | 49 50 | sylib |  |-  ( ph -> ( ( A (,] B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 52 | 51 | eqcomd |  |-  ( ph -> ( A (,] B ) = ( ( A (,] B ) u. { B } ) ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ph -> ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ) | 
						
							| 55 |  | ioounsn |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 56 | 1 5 3 55 | syl3anc |  |-  ( ph -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 57 | 56 | eqcomd |  |-  ( ph -> ( A (,] B ) = ( ( A (,) B ) u. { B } ) ) | 
						
							| 58 | 54 57 | fveq12d |  |-  ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) | 
						
							| 59 | 48 58 | eleqtrd |  |-  ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) | 
						
							| 60 | 29 31 10 12 32 59 | limcres |  |-  ( ph -> ( ( F |` ( A (,) B ) ) limCC B ) = ( F limCC B ) ) | 
						
							| 61 | 8 60 | eleqtrrd |  |-  ( ph -> ( F ` B ) e. ( ( F |` ( A (,) B ) ) limCC B ) ) |