Step |
Hyp |
Ref |
Expression |
1 |
|
ioccncflimc.a |
|- ( ph -> A e. RR* ) |
2 |
|
ioccncflimc.b |
|- ( ph -> B e. RR ) |
3 |
|
ioccncflimc.altb |
|- ( ph -> A < B ) |
4 |
|
ioccncflimc.f |
|- ( ph -> F e. ( ( A (,] B ) -cn-> CC ) ) |
5 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
6 |
2
|
leidd |
|- ( ph -> B <_ B ) |
7 |
1 5 5 3 6
|
eliocd |
|- ( ph -> B e. ( A (,] B ) ) |
8 |
4 7
|
cnlimci |
|- ( ph -> ( F ` B ) e. ( F limCC B ) ) |
9 |
|
cncfrss |
|- ( F e. ( ( A (,] B ) -cn-> CC ) -> ( A (,] B ) C_ CC ) |
10 |
4 9
|
syl |
|- ( ph -> ( A (,] B ) C_ CC ) |
11 |
|
ssid |
|- CC C_ CC |
12 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
13 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) |
14 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( ( TopOpen ` CCfld ) |`t CC ) |
15 |
12 13 14
|
cncfcn |
|- ( ( ( A (,] B ) C_ CC /\ CC C_ CC ) -> ( ( A (,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
16 |
10 11 15
|
sylancl |
|- ( ph -> ( ( A (,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
17 |
4 16
|
eleqtrd |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
18 |
12
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
19 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,] B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) ) |
20 |
18 10 19
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) ) |
21 |
12
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
22 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
23 |
22
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
24 |
21 23
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
25 |
24
|
cnfldtopon |
|- ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) |
26 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) /\ ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) |
27 |
20 25 26
|
sylancl |
|- ( ph -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) |
28 |
17 27
|
mpbid |
|- ( ph -> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) |
29 |
28
|
simpld |
|- ( ph -> F : ( A (,] B ) --> CC ) |
30 |
|
ioossioc |
|- ( A (,) B ) C_ ( A (,] B ) |
31 |
30
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A (,] B ) ) |
32 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) |
33 |
2
|
recnd |
|- ( ph -> B e. CC ) |
34 |
22
|
ntrtop |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
35 |
21 34
|
ax-mp |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
36 |
|
undif |
|- ( ( A (,] B ) C_ CC <-> ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) = CC ) |
37 |
10 36
|
sylib |
|- ( ph -> ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) = CC ) |
38 |
37
|
eqcomd |
|- ( ph -> CC = ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) |
39 |
38
|
fveq2d |
|- ( ph -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) |
40 |
35 39
|
eqtr3id |
|- ( ph -> CC = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) |
41 |
33 40
|
eleqtrd |
|- ( ph -> B e. ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) |
42 |
41 7
|
elind |
|- ( ph -> B e. ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) |
43 |
21
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
44 |
|
ssid |
|- ( A (,] B ) C_ ( A (,] B ) |
45 |
44
|
a1i |
|- ( ph -> ( A (,] B ) C_ ( A (,] B ) ) |
46 |
22 13
|
restntr |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,] B ) C_ CC /\ ( A (,] B ) C_ ( A (,] B ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) |
47 |
43 10 45 46
|
syl3anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) |
48 |
42 47
|
eleqtrrd |
|- ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) ) |
49 |
7
|
snssd |
|- ( ph -> { B } C_ ( A (,] B ) ) |
50 |
|
ssequn2 |
|- ( { B } C_ ( A (,] B ) <-> ( ( A (,] B ) u. { B } ) = ( A (,] B ) ) |
51 |
49 50
|
sylib |
|- ( ph -> ( ( A (,] B ) u. { B } ) = ( A (,] B ) ) |
52 |
51
|
eqcomd |
|- ( ph -> ( A (,] B ) = ( ( A (,] B ) u. { B } ) ) |
53 |
52
|
oveq2d |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) |
54 |
53
|
fveq2d |
|- ( ph -> ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ) |
55 |
|
ioounsn |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
56 |
1 5 3 55
|
syl3anc |
|- ( ph -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
57 |
56
|
eqcomd |
|- ( ph -> ( A (,] B ) = ( ( A (,) B ) u. { B } ) ) |
58 |
54 57
|
fveq12d |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) |
59 |
48 58
|
eleqtrd |
|- ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) |
60 |
29 31 10 12 32 59
|
limcres |
|- ( ph -> ( ( F |` ( A (,) B ) ) limCC B ) = ( F limCC B ) ) |
61 |
8 60
|
eleqtrrd |
|- ( ph -> ( F ` B ) e. ( ( F |` ( A (,) B ) ) limCC B ) ) |