Metamath Proof Explorer


Theorem iocleub

Description: An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iocleub
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,] B ) ) -> C <_ B )

Proof

Step Hyp Ref Expression
1 elioc1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) )
2 simp3
 |-  ( ( C e. RR* /\ A < C /\ C <_ B ) -> C <_ B )
3 1 2 syl6bi
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,] B ) -> C <_ B ) )
4 3 3impia
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,] B ) ) -> C <_ B )