Step |
Hyp |
Ref |
Expression |
1 |
|
mnfxr |
|- -oo e. RR* |
2 |
1
|
a1i |
|- ( A e. RR -> -oo e. RR* ) |
3 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
4 |
|
pnfxr |
|- +oo e. RR* |
5 |
4
|
a1i |
|- ( A e. RR -> +oo e. RR* ) |
6 |
|
mnflt |
|- ( A e. RR -> -oo < A ) |
7 |
|
ltpnf |
|- ( A e. RR -> A < +oo ) |
8 |
|
df-ioc |
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
9 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
10 |
|
xrltnle |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) |
11 |
|
xrlelttr |
|- ( ( w e. RR* /\ A e. RR* /\ +oo e. RR* ) -> ( ( w <_ A /\ A < +oo ) -> w < +oo ) ) |
12 |
|
xrlttr |
|- ( ( -oo e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( -oo < A /\ A < w ) -> -oo < w ) ) |
13 |
8 9 10 9 11 12
|
ixxun |
|- ( ( ( -oo e. RR* /\ A e. RR* /\ +oo e. RR* ) /\ ( -oo < A /\ A < +oo ) ) -> ( ( -oo (,] A ) u. ( A (,) +oo ) ) = ( -oo (,) +oo ) ) |
14 |
2 3 5 6 7 13
|
syl32anc |
|- ( A e. RR -> ( ( -oo (,] A ) u. ( A (,) +oo ) ) = ( -oo (,) +oo ) ) |
15 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
16 |
14 15
|
eqtrdi |
|- ( A e. RR -> ( ( -oo (,] A ) u. ( A (,) +oo ) ) = RR ) |
17 |
|
iocssre |
|- ( ( -oo e. RR* /\ A e. RR ) -> ( -oo (,] A ) C_ RR ) |
18 |
1 17
|
mpan |
|- ( A e. RR -> ( -oo (,] A ) C_ RR ) |
19 |
8 9 10
|
ixxdisj |
|- ( ( -oo e. RR* /\ A e. RR* /\ +oo e. RR* ) -> ( ( -oo (,] A ) i^i ( A (,) +oo ) ) = (/) ) |
20 |
1 3 5 19
|
mp3an2i |
|- ( A e. RR -> ( ( -oo (,] A ) i^i ( A (,) +oo ) ) = (/) ) |
21 |
|
uneqdifeq |
|- ( ( ( -oo (,] A ) C_ RR /\ ( ( -oo (,] A ) i^i ( A (,) +oo ) ) = (/) ) -> ( ( ( -oo (,] A ) u. ( A (,) +oo ) ) = RR <-> ( RR \ ( -oo (,] A ) ) = ( A (,) +oo ) ) ) |
22 |
18 20 21
|
syl2anc |
|- ( A e. RR -> ( ( ( -oo (,] A ) u. ( A (,) +oo ) ) = RR <-> ( RR \ ( -oo (,] A ) ) = ( A (,) +oo ) ) ) |
23 |
16 22
|
mpbid |
|- ( A e. RR -> ( RR \ ( -oo (,] A ) ) = ( A (,) +oo ) ) |
24 |
|
iooretop |
|- ( A (,) +oo ) e. ( topGen ` ran (,) ) |
25 |
23 24
|
eqeltrdi |
|- ( A e. RR -> ( RR \ ( -oo (,] A ) ) e. ( topGen ` ran (,) ) ) |
26 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
27 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
28 |
27
|
iscld2 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( -oo (,] A ) C_ RR ) -> ( ( -oo (,] A ) e. ( Clsd ` ( topGen ` ran (,) ) ) <-> ( RR \ ( -oo (,] A ) ) e. ( topGen ` ran (,) ) ) ) |
29 |
26 18 28
|
sylancr |
|- ( A e. RR -> ( ( -oo (,] A ) e. ( Clsd ` ( topGen ` ran (,) ) ) <-> ( RR \ ( -oo (,] A ) ) e. ( topGen ` ran (,) ) ) ) |
30 |
25 29
|
mpbird |
|- ( A e. RR -> ( -oo (,] A ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |